On Strong NP-Completeness of Rational Problems
نویسنده
چکیده
The computational complexity of the partition, 0-1 subset sum, unbounded subset sum, 0-1 knapsack and unbounded knapsack problems and their multiple variants were studied in numerous papers in the past where all the weights and profits were assumed to be integers. We re-examine here the computational complexity of all these problems in the setting where the weights and profits are allowed to be any rational numbers. We show that all of these problems in this setting become strongly NP-complete and, as a result, no pseudo-polynomial algorithm can exist for solving them unless P=NP. Despite this result we show that they all still admit a fully polynomial-time approximation scheme.
منابع مشابه
On the Complexity of Variations of Equal Sum Subsets
The Equal Sum Subsets problem, where we are given a set of positive integers and we ask for two nonempty disjoint subsets such that their elements add up to the same total, is known to be NP-hard. In this paper we give (pseudo-)polynomial algorithms and/or (strong) NP-hardness proofs for several natural variations of Equal Sum Subsets. Among others we present (1) a framework for obtaining NP-ha...
متن کاملCo-NP-completeness of some matrix classification problems
The classes of P-, P 0-, R 0-, semimonotone, strictly semimonotone, column suucient, and nondegenerate matrices play important roles in studying solution properties of equations and complementarity problems and conver-gence/complexity analysis of methods for solving these problems. It is known that the problem of deciding whether a square matrix with integer/rational entries is a P-(or nondegen...
متن کاملInterdiction Problems on Planar Graphs
We introduce approximation algorithms and strong NP-completeness results for interdiction problems on planar graphs. Interdiction problems are leader-follower games in which the leader is allowed to delete a certain number of edges from the graph in order to maximally impede the follower, who is trying to solve an optimization problem on the impeded graph. We give a multiplicative (1+ǫ)-approxi...
متن کاملStrong NP-Completeness of a Matrix Similarity Problem
Consider the following problem: given an upper triangular matrix A, with rational entries and distinct diagonal elements, and a tolerance 1, decide whether there exists a nonsingu-lar matrix G, with condition number bounded by , such that G ?1 AG is 22 block diagonal. This problem, which we shall refer to as DICHOTOMY, is an important one in the theory of invariant subspaces. It has recently be...
متن کاملStrong NP-Hardness for Sparse Optimization with Concave Penalty Functions
We show that finding a global optimal solution for the regularized Lq-minimization problem (q ≥ 1) is strongly NP-hard if the penalty function is concave but not linear in a neighborhood of zero and satisfies a very mild technical condition. This implies that it is impossible to have a fully polynomial-time approximation scheme (FPTAS) for such problems unless P = NP. This result clarifies the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.09465 شماره
صفحات -
تاریخ انتشار 2018